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SUMMARY

The goal of many gene-expression microarray profiling clinical studies is to develop a multivariate classifier
to predict patient disease outcome from a gene-expression profile measured on some biological specimen
from the patient. Often some preliminary validation of the predictive power of a profile-based classifier
is carried out using the same data set that was used to derive the classifier. Techniques such as cross-
validation or bootstrapping can be used in this setting to assess predictive power, and if applied correctly,
can result in a less biased estimate of predictive accuracy of a classifier. However, some investigators
have attempted to apply standard statistical inference procedures to assess the statistical significance of
associations between true and cross-validated predicted outcomes. We demonstrate in this paper that
naı̈ve application of standard statistical inference procedures to these measures of association under null
situations can result in greatly inflated testing type I error rates. Under alternatives of small to moderate
associations, confidence interval coverage probabilities may be too low, although for very large associations
coverage probabilities approach their intended values. Our results suggest that caution should be exercised
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in interpreting some of the claims of exceptional prognostic classifier performance that have been reported
in prominent biomedical journals in the past few years. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A frequent goal in gene-expression microarray clinical studies is to develop a multivariate classifier
of disease outcome [1–9]. In these studies, gene-expression microarray assays are performed on
tissue or other biological material from patients for whom clinical outcomes such as survival
are known. The results of the microarray assays are thousands of gene-expression measures,
comprising a ‘profile’, for each of the patient samples assayed. Patient disease outcome might be
classified, for example, as ‘good’ (long survival) or ‘bad’ (short survival). Mathematical methods
are applied to the expression profile data to develop a multivariate classifier to predict disease
outcome. For example, van’t Veer et al. [1] conducted gene-expression microarray analyses on
breast tumours and used the data from 78 of the lymph node-negative tumours to build a 70-
gene classifier of clinical outcome; they reported it had excellent ability to distinguish between
breast cancer patients who did versus did not develop distant metastases within 5 years. Beer
et al. [3] developed a 50-gene risk index using gene-expression profiles from 86 primary lung
adenocarcinomas and demonstrated that their risk index could separate patients into subgroups
with distinct overall survival probabilities.

A common approach to assessing classifier performance is to compute prediction accuracy,
defined as the proportion of samples correctly classified. Ideally, classifier performance would
be assessed on a completely independent set of patient specimens, but often sufficiently large
numbers of suitable specimens with associated clinical outcome data are not available. The
alternative is to estimate prediction accuracy using the same data from which the classifier was
derived; however, this requires proper application of resampling methods such as cross-validation
[10] or bootstrapping [11, 12] in order to avoid seriously overestimating the prediction accuracy.
Alternatively, some authors have chosen to evaluate classifier performance by estimating the
association of the true (known) classes with the classes predicted from the cross-validated
classifier and performing a test of the statistical significance of that association. For example,
this is an approach that was taken in the study by van’t Veer et al. [1] that has received much
attention. In the simplest case of a two-class prediction problem, this measure of association might
take the form of an odds ratio calculated from a 2× 2 table, as the one displayed in Table I,
with one dimension of the table representing the true class (Class 1 versus Class 2) and the other
dimension representing the cross-validated classifier-predicted class (Class 1 versus Class 2).

A similar approach is to perform a logistic regression analysis considering the true class as
the dependent binary variable and the cross-validated predicted class as an independent vari-
able in the model, and then test the regression coefficient. Cox proportional hazards regression
could also be used to examine the association between the predicted class indicators and ac-
tual survival times. A potential advantage of the logistic and Cox regression approaches is their
flexibility to allow adjustment for other covariates, but here we consider only the simple 2× 2 table
approach with no additional covariates. Interested readers are referred to a technical
report by the authors (ftp://linus.nci.nih.gov/pub/techreport/Lusa manuscript SIM-5-03-05.pdf)
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Table I. 2× 2 table for estimation of odds ratio.

True-class

Class 1 Class 2

Class 1 a b
CV-class

Class 2 c d

that examines the performance of the Cox regression approach using cross-validated class indicators
as predictors in the regression model.

The questions we explore in this paper are whether standard statistical inference procedures
applied to the odds ratio measuring the association between true and cross-validated predicted
classes are valid. As we will demonstrate through a series of selected simulation studies, these
naı̈ve inference procedures for testing the significance of measures of association can suffer from
severely inflated type I errors and poor confidence interval coverage. Furthermore, our simulations
will clearly demonstrate the difficulty in interpreting measures of association such as the odds ratio
for purposes of gauging performance of a classifier.

2. METHODS

2.1. Class prediction method

Many methods have been proposed for constructing multivariate predictors of class membership
using microarray data, including linear and quadratic discriminant analysis, logistic regression,
decision trees, support vector machines, and numerous others [13, 14]. Interestingly, simple clas-
sification methods such as diagonal linear discriminant analysis have been shown to work well
for microarray data [13], where a very large number of measured characteristics, compared to the
number of subjects, are available. For purposes of our simulation studies, we use diagonal linear
discriminant analysis, but we expect the results would be similar if we were to use other class
prediction methods.

In brief, diagonal linear discriminant analysis is performed as follows. Suppose we have a
collection of n subjects. Some of these subjects are known to belong to Class 1 (e.g. poor
prognosis), and the rest belong to Class 2 (e.g. good prognosis). Let xi j =measurement of the j th
characteristic (e.g. gene-expression value) on the i th subject where these measurements collectively
form the gene-expression profile for subject i . Apply a feature selection step to reduce the number
of candidate predictor variables to a limited set of G genes that are the most informative about the
class distinction. For subject i we denote the set of selected features by xi = (xi1, xi2, . . . , xiG).
For example, feature selection might be accomplished using univariate two-sample t-tests to test,
for each gene, if its mean expression level differs between the two prognosis classes. Let x̄ (1)

j and

x̄ (2)
j denote the mean expression of gene j in Classes 1 and 2, respectively. The value s2j denotes

the pooled estimate of the within class variance for gene j . The diagonal linear discriminant rule
assigns a new sample, represented by a vector x∗ of expression measurements, to Class 1 if

G∑
j=1

[
(x∗

j − x̄ (1)
j )2

s2j

]
�

G∑
j=1

[
(x∗

j − x̄ (2)
j )2

s2j

]
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and otherwise the new sample is assigned to Class 2. In this formula, x∗
j denotes the expression

for gene j in the new sample to be classified.

2.2. Cross-validation

The entire linear discriminant analysis procedure, including the feature selection step, is subjected
to cross-validation in order to obtain cross-validated class predictions. K -fold cross-validated class
predictions are obtained by dividing the data into K parts. One of the K parts is set aside (test
set) and a prediction rule is built on the remaining data (training set). The procedure is repeated
until all specimens are included in a test set exactly once and their class membership is predicted
using the prediction rule developed on the training set that excludes that test set. A special case
of K -fold cross-validation is leave-one-out (LOO) cross-validation in which there are n test sets,
each consisting of a single subject. Leave-one-out cross-validation has been described as a logical
choice for relatively small sample sizes [15] and has been frequently used in microarray studies.
At the completion of the cross-validated classification process, each subject has an associated true
class membership and a cross-validated predicted class membership.

2.3. Cross-validated odds ratio as a measure of association

One measure of the association between the cross-validated classifier-predicted class (CV-class)
and the true class is the odds ratio formed from a 2× 2 table such as the one displayed in Table I.

The usual estimate of the log odds ratio is the logarithm of the cross-product ratio, or log(ad/bc),
and its standard error is calculated as (1/a + 1/b+ 1/c+ 1/d)1/2. Results in this paper are based
on the commonly used modifications of the log odds ratio and its standard error, �̂= log((a+0.5)
(d+0.5))/((b+0.5)(c+0.5)) and s.e.(�̂) = (1/(a+0.5)+1/(b+0.5)+1/(c+0.5)+1/(d+0.5))1/2,
which avoid problems handling zero cell counts. Ignoring for the moment the fact that the CV-class
designations are data derived, a typical test of no association (odds ratio equals one or log odds
ratio equals zero) would be based on the statistic z = �̂/s.e.(�̂) which, under standard conditions,
is assumed to have an approximate standard normal distribution under the null hypothesis that the
true odds ratio is equal to 1. A 95 per cent confidence interval is given by �̂ ± 1.96× s.e.(�̂).
Calculations similar to these were performed in the papers by van’t Veer et al. [1] and van de
Vijver et al. [2].

2.4. Data simulation

To simulate data under the null case, gene-expression profiles for each patient were gener-
ated independently of the patients’ survival times. Expression measurements for each of 10 000
genes were generated independently from the standard normal distribution. Survival times were
generated independently from an exponential distribution with parameter lambda= − log(0.5)/10
which translates to an overall survival probability of 50 per cent at 10 years.

Under the alternative case, survival times were generated to depend on gene-expression profiles.
For each patient, 9900 genes were generated independently from a standard normal distribution,
while the remaining 100 genes were generated independently from a normal distribution with
mean �1 and variance 1 for half of the patients and from a normal distribution with mean �2
and variance 1 for the other half. The expression measures for these 100 genes were averaged for
each patient to produce scores s1, s2, . . . , sn . These scores were then used as the mean parameter
(on the log-scale) of the log normal distribution with variance 1, from which survival times were
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simulated. Paired values of �1 and �2 were chosen so that on average half of the subjects would
have a survival time longer than 10 years. The larger the difference between �1 and �2, the stronger
is the association between gene-expression and survival.

To simulate the classifier building procedure, patients were divided into poor and good prognosis
groups on the basis of their observed survival times. Subjects with observed survival time shorter
than 10 years were assigned to poor prognosis class; others were assigned to the good prognosis
class. Survival times greater than 20 years were censored at 20 years. These assigned outcome
classes represented the ‘true’ prognostic classes. On average, specimens were equally distributed
among the two classes due to the choice of parameters of the distributions used to generate survival
times. Univariate two-sample pooled variance t-statistics comparing the good versus poor prognosis
groups were computed for each gene. For the null case simulations, either the 10 or 100 genes
with largest absolute t-statistics were selected as the ‘informative features’ to be used in building
the classifier. For the alternative case simulations, the top 100 most informative genes (by t-test)
were selected. Fisher’s diagonal linear discriminant analysis was used to build the multivariate
prediction rule using the informative genes to classify the specimens into the two prognosis groups.
This entire classifier building process was embedded in a cross-validation loop. For each training
set, informative genes were re-selected, the classifier was re-calculated, and the classifier was used
to make predictions on the test set. For the alternative case simulations, note that the 100-gene
sets selected as the informative features in the training data sets were not guaranteed to be the
genes that were truly generated from two different distributions for the good and poor prognosis
groups. At the end of each simulated cross-validation, there were true and cross-validated predicted
prognosis classes assigned to each patient.

The simulation study was conducted using code written in the R language (http://www.
r-project.org/). All simulations were repeated 10 000 times. For the null cases, parameters were
varied as follows: 30, 50, 100 or 500 subjects; 10 or 100 most informative genes; LOO, 10-fold
or 5-fold cross-validation. For the alternative cases, the number of subjects was always 100, 100
most informative features were selected, and only LOO cross-validation was considered. While
we would not usually advocate building classifiers using sample sizes as small as 30 or 50, we
include them in our simulations because they cover the range of sample sizes that have been used
in published studies that developed microarray-based classifiers.

Under the null case, gene-expression profiles are generated from the same distribution for all
patients, and class membership is defined independently from gene-expression profiles; therefore,
there should be no association between true and CV-class membership (log odds ratio= 0). Our
simulation studies examine for potential bias in the estimates and problems with the level of tests
of hypotheses of no association.

Under the alternative case, we expect there will be some association between the CV-class and
true class and survival (a non-zero log odds ratio). Due to the complexity of the classifier derivation,
the true values of the log odds ratios and of the misclassification error rate had to be empirically
determined. The true quantities were obtained through an ‘inner’ simulation loop, where at each
‘outer loop’ of the primary simulation we simulated 100 data sets of 100 subjects each from
the same population from which the original sample, on which the classifier was developed, was
drawn. The classifier derived on the full original data set was applied to each new (‘inner loop’)
data set. For each of the 100 ‘inner loop’ data sets, using classifier developed on full original
sample, predicted class memberships were obtained and log odds ratios and misclassification error
rates were estimated. These estimates were then averaged over the 100 inner loop data sets to
empirically determine the true log odds ratio and misclassification error rates. These true quantities
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were compared to the cross-validated estimates obtained in the outer loop in order to estimate bias
and, for log odds ratio, confidence interval coverage. Confidence interval coverage was broken
into components, recording how often the true value falls completely below the lower confidence
bound (overestimation) and how often the true value falls completely above the upper confidence
bound (underestimation).

3. RESULTS

3.1. Null case

Table II presents simulation results for the log odds ratio estimates calculated under a null situation
using various cross-validation methods.

The most striking findings are that all of these cross-validation methods yielded log odds
ratio estimates with SDs substantially larger than the naı̈ve standard error estimate, s.e.(�̂) =
(1/(a + 0.5) + 1/(b + 0.5) + 1/(c + 0.5) + 1/(d + 0.5))1/2, that assumes all observations are
independent. Additionally, we note that the use of 10-fold or 5-fold cross-validation resulted in
considerably smaller estimated SDs of the log odds ratio estimates. This may be related to the claim
in the context of prediction error estimation that LOO cross-validation often results in estimates with
large variance [11]. However, it is interesting that the degree to which the true SD is inflated relative
to the naı̈ve standard error under LOO cross-validation decreases with decreasing sample size (for
example, inflation factors 3.3, 2.4, 1.9, and 1.4 for sample sizes 500, 100, 50, and 30, respectively,
using 100 most informative genes in the classifier). For 5-fold and 10-fold cross-validation with
100 most informative genes used in the classifier, the variance inflation is not as strongly related to
sample size. When 10 most informative genes are used, the variance inflation seen with 5-fold and
10-fold cross-validation is roughly independent of sample size, while for LOO cross-validation the
inflation remains a function of sample size. This suggests that both the complexity of the model
and the per cent overlap between LOO training sets influence degree of variance inflation. In part,
this may be explained by the fact that for LOO cross-validation the proportion of overlapping
observations ((n− 2)/(n− 1)) between any two LOO training sets increases with sample size (n),
and this increases the degree of correlation between LOO class predictions.

The impact of the variance inflation is exhibited most dramatically in the level of the tests of
significance of the log odds ratio. For example, if one were to use LOO cross-validation for a
study of 100 subjects, a nominal 5 per cent two-sided z-test would reject the null hypothesis an
estimated 41 per cent of the time (23 per cent lower rejection, 18 per cent upper rejection). The 18
per cent upper rejection rate is probably of greatest concern, as these might represent classifiers
likely to be falsely reported as promising, whereas classifiers exhibiting negative association with
truth are unlikely to ever be published. The upwardly biased testing level for LOO cross-validation,
related to variance inflation, is exacerbated with a larger sample size. For a study of 500 subjects,
the estimated rejection rate increased to nearly 55 per cent. Although the performance of the test
is not as bad when 5-fold or 10-fold cross-validation is used, the rejection rates for a study with
sample size 100 still exceed the nominal values by an unacceptably large margin.

A further interesting observation is that for all methods, the mean estimated log odds ratio
approached the correct value of zero as the sample size increased but was strongly biased for small
sample sizes. The bias was less when 10 most informative genes were used in the predictor rather
than 100, but it was still substantial. The estimated median log odds ratio estimates suggested
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a trend of slightly more departure from the true value of zero for 5-fold and 10-fold cross-validation
compared to LOO cross-validation, but there were no statistically significant differences in bias
based on the mean log odds ratio estimates. Although LOO cross-validation is known to produce
nearly unbiased estimates of prediction accuracy ((a + d)/n in the notation of Table I), the highly
non-linear log-odds ratio does not enjoy this same near-unbiasedness. Through a series of additional
simulation studies (not shown) we found that this bias could be largely removed by forcing all
simulated data sets to have equal numbers of subjects in the good and poor prognosis groups
and using leave-two-out cross-validation (one per group). This suggests that the odds ratio may
be more sensitive than the prediction accuracy to violations of the equal prior assumption of the
simple version of diagonal linear discriminant analysis we used. However, the serious problems
with variance inflation persisted regardless of the presence or absence of bias.

3.2. Alternative case

Table III presents results demonstrating properties of the odds ratio estimates, including confidence
interval coverage, under alternative cases in which there was a positive association between gene-
expression profiles and survival outcomes.

Table III shows that for extremely large odds ratios, the confidence interval coverage is not too
far from the intended coverage probability. However, for moderate or smaller odds ratios, estimates
can be biased and confidence interval coverage can be quite poor. Note that the SDs of the estimated
log odds ratios are very large relative to the magnitude of the log odds ratios for a sample of size
100 which is typical of the size of many gene-expression microarray profiling studies. This implies
that even if the confidence intervals had correct coverage probabilities, the large variance of the
estimators may result in very wide confidence intervals. These wide confidence intervals indicate
that studies with sample size around 100 may not yield sufficiently precise association estimates
to distinguish a clinically useful prognostic indicator from a minimally informative indicator. In
addition, it is clear that the odds ratio can provide a misleading impression of the performance of
the predictor. For example, an odds ratio as large as 15 or 16 (third case presented in Table III)
would appear extremely impressive in the context of an epidemiologic study, but we see from Table
III that the corresponding classifier misclassification rate was a rather unsatisfying 20 per cent.

4. DISCUSSION

We demonstrated that assessing the strength of a classifier by testing the statistical significance
of the odds ratio relating true and cross-validated predicted classes or calculating confidence
intervals for that odds ratio is problematic. When a classifier is truly uninformative (null case),
application of standard inference procedures to test for significance of the association when cross-
validation has been used to determine predicted classes carries with it a very high likelihood of
obtaining false positive statistical significance, and reported p-values will be too small. If there
is some modest predictive value in the data-derived classifier, confidence intervals for the true
association between predicted and true class may be very wide and not have the reported coverage
properties. Only when the true association is very large will the confidence interval coverage be
approximately correct. The problems arise from the fact that the data pairs (CV-class, true class)
are not independent across subjects, and their dependency derives from repeated re-use of the true
classes in the cross-validation process. This dependency violates the assumptions of the standard
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statistical procedures for performing tests and constructing confidence intervals for the measures
of association and its effects are seen most strikingly when true associations are absent or no more
than modest. In addition, our results emphasized a point made by others [16, 17] that measures of
association such as an odds ratio are generally poor gauges of classifier performance.

The results summarized above suggest that claims regarding exceptional classifier performance
made in some gene-expression microarray papers published in prominent biomedical journals
should be interpreted cautiously. For example, in the paper by van’t Veer et al. [1], the fully
cross-validated odds ratio is reported to be 15 with p-value 4.1× 10−6 and 95 per cent CI 4-56.
If the true value is close to the point estimate or larger, then the inference statements are accurate.
However, because we do not know the true value and the CI is very wide, we cannot rule out the
possibility that the true value is substantially smaller than the point estimate. If the true value of
the odds ratio is no more than modest in size, then the results could be subject to some of the
problems of poor confidence interval coverage highlighted in this paper. Subsequent independent
validation studies, as presented in the second through fourth odds ratios presented in Table II of
the paper by van de Vijver et al. [2], lend support to the original odds ratio of 15, and therefore,
the accuracy of the confidence intervals. Nonetheless, all of the confidence intervals are wide and
include modest-size odds ratios such as 3 or 5 as well as some very large odds ratios, so one still
cannot reliably answer the question of whether the classifier is a powerful clinical tool or not.

Several authors [3, 18–21] besides van’t Veer et al. [1] have attempted inference within a cross-
validation context. We found examples of studies in which cross-validated predicted classes were
used to define groups for log rank tests or for tests of odds ratio, or in which cross-validation was
used to define risk scores that were tested for statistical significance as part of a Cox regression
model. Prior to initiating a study, one has no information about the likely effect size (odds ratio,
regression coefficient, or survival curve separation), and therefore, no indication of whether the
problems described in this paper are likely to be encountered if inference in the context of cross-
validation such as described in this paper is to be used.

The next question is whether there are satisfactory remedies for these problems. The most
important point is to recognize that the prime interest is to evaluate the classifier’s predictive
accuracy and to determine if the accuracy is better than expected by chance. Cross-validation
provides a nearly unbiased estimate of predictive accuracy. Radmacher et al. [15] provide a
valid permutation test of whether the classifier accuracy is better than expected by chance. Their
permutation approach considers many possible permutations of assignments of clinical outcomes
to profiles, and calculates for each permuted data set the cross-validated prediction accuracy. The
proportion of permutations for which the cross-validated accuracy calculated on the original data
set is better (larger) is a valid p-value for testing the null hypothesis that the predictor performance
is no better than chance.

If it is desired to assess predictor performance when adjusted for other covariates, the permutation
method of Radmacher et al. [15] cannot be directly applied. Tibshirani and Efron [22] discuss the
idea of ‘pre-validation’ in logistic regression models in which one of the variables in the model
is a predicted class indicator obtained through cross-validation and additional covariates can be
incorporated into the regression model. (Without covariates, testing the regression coefficient of
the cross-validated predicted class indicator in the logistic model is essentially equivalent to testing
the log odds ratio as described in this paper.) They note a problem with the degrees of freedom
in the test of the regression coefficient that is related to the problems with type I error rate and
confidence interval coverage we observed. We have shown how seriously type I error rates and
confidence interval non-coverage rates can be inflated, and we demonstrated the roles that sample
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size, model complexity and method of cross-validation play. The dependency problem we described
above is essentially the phenomenon Tibshirani and Efron describe as ‘information leak’. They
explore a bootstrap method to approximately correct the degrees of freedom for testing regression
coefficients. This seems like a promising approach, but would require further investigation to
determine how successfully the bootstrap-estimated degrees of freedom can correct for problems
in testing levels and confidence interval coverage. Troendle et al. [23] demonstrated that bootstrap
procedures may not perform well in moderate to small samples of very high dimensional data. In
addition, we would be remiss if we did not point out that even if one were able to appropriately
correct the problems with the inference procedures, the variances of the measures of association
obtained through resampling of typical size gene-expression microarray data sets would still be
very large. Also, it would be desirable to base the procedure on a more interpretable alternative
to the logistic regression coefficient such as gain in predictive accuracy above predictive accuracy
afforded by standard covariates.

In summary, our results provide further evidence that concerns recently expressed [24, 25]
about the reproducibility and validity of microarray-based prognostic classifiers are warranted.
We applaud the decision of Cardoso et al. [26] to conduct a further ‘pre-validation’ study of
the classifier developed and studied in van’t Veer et al. [1] and van de Vijver et al. [2] prior to
launching a large trial for definitive validation of that classifier. More and larger independent data
sets on which to develop and validate classifiers derived from high-dimensional biologic data are
needed if these classifiers are ever to be important clinical tools.
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